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SUMMARY

The Darcy–Boussinesq equations are solved in two dimensions and in elliptical cylindrical co-ordinates
using a second-order-accurate finite difference code and a very fine grid. For the limiting case of a
circular geometry, the results show that a hysteresis loop is possible for some values of the radius ratio,
in agreement both with previous calculations using cylindrical co-ordinates and with the available
experimental data. For the general case of an annulus of elliptical cross-section, two configurations, blunt
or slender, are considered. When the major axes are horizontal (blunt case) a hysteresis loop appears for
a certain range of Raleigh numbers. For the slender configuration, when the major axes are vertical, a
transition from a steady to a periodic regime (Hopf bifurcation) has been evidenced. In all cases, the heat
transfer rate from the slender geometry is greater than that obtained in the blunt case. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Natural convection in the annular region between horizontal concentric cylinders, of elliptic or
circular cross-section, and for fluid or porous layers is a problem that is not yet totally
understood despite the numerous studies and the important industrial applications. The first
experimental and numerical work concerning horizontal cylindrical porous layers was done by
Caltagirone [1,2]. In the experiments, the porous medium consisted of glass beads and a
colourless liquid both having the same index of refraction. The thermal field was visualized
using the Christiansen effect. For a layer with a radius ratio R=2, the experiments showed
that the unicellular flow field remained stable for Rayleigh numbers not exceeding 6594.
However, beyond this value of the Rayleigh number the experiments showed that the flow field
became three-dimensional only on the top part of the layer. The flow field in the bottom part
of the layer remained two-dimensional. Unfortunately, the numerical solution of the governing
equations using a second-order finite difference technique did not confirm these results. The
unicellular flow regime was found to be stable for Rayleigh numbers well beyond 6594.
However, quantitative heat transfer data obtained experimentally was successfully compared
with numerical results with a two-dimensional code.

* Correspondence to: Dept. Quı́mica, Centro de Quı́mica Fina e Biotecnologia, FCT/UNL, 2825-114 Caparica,
Portugal.

CCC 0271–2091/99/180513–10$17.50
Copyright © 1999 John Wiley & Sons, Ltd.

Recei6ed May 1998
Re6ised August 1998



E. SAATDJIAN ET AL.514

A numerical study using the Galerkin method by Rao et al. [3] was able to reproduce the
bifurcation point observed experimentally. For Rayleigh numbers beyond 6594, these authors
obtain three different flow fields depending on the initial conditions. Himasekhar and Bau [4]
use a regular perturbation expansion technique to study bifurcation phenomena for this
problem. However, their analysis is valid for annuli of small radius ratio only.

The visualization experiments of Caltagirone have recently been redone by Charrier-Mojtabi
et al. [5,6] on a very short cell. In this study, a unicellular flow regime was observed
experimentally for Rayleigh numbers well beyond 6594. However, in some cases (the article
is not very clear on this subject) a bicellular flow regime was observed when the Rayleigh
number was decreased, and the flow field became unicellular once again for Ra=6594.

A new scenario of the bifurcation phenomena occurring in this layer has recently been
presented by Mota and Saatdjian [7,8], whose results are based on the numerical solution of
the two-dimensional equations. According to this study, for a layer of radius ratio R=2 and
for Rayleigh numbers above 65, a closed hysteresis loop is observed. On increasing the
Rayleigh number, the unicellular flow field is stable until a value of about 110 is reached. At
this point, the flow field becomes bicellular. If the Rayleigh number is decreased, the bicellular
flow field is stable and the flow field becomes unicellular for a Rayleigh number of 6594. This
scenario is consistent with the experiments and with most of the previously published
theoretical and numerical data. However, the transitional Rayleigh number of 110 for which
the unicellular flow regime becomes bicellular has not yet been confirmed.

Here, the Darcy–Oberbeck–Boussinesq equations are solved numerically in the porous
annulus between horizontal cylinders of elliptic cross-section. Notice that the circular annulus
and a flat plate are two limiting cases of the system considered here, the validity of the code
can thus be checked. Concerning the general case, heat transfer is enhanced when the major
axes are parallel to the vertical axis, a possible explanation is presented.

2. PROBLEM FORMULATION

Consider the annular porous region between two confocal elliptic horizontal cylinders. The
inner and outer boundaries are kept at constant temperatures Ti and To respectively, with
Ti\To. For this geometry, elliptical cylindrical co-ordinates are very practical and, further-
more, they are orthogonal. They are defined by the following transformations (blunt case):

x=a cosh u cos 6, y=a sinh u sin 6, z=z.

For this system of co-ordinates, the metric coefficients in the three directions are (h*, h*, 1)
where

h*=a
cosh2 u−cos2 6,

and 2a is the focal distance. This geometry is completely specified by two dimensionless
parameters: a2/a1 the ratio of the major axes of the outer and inner ellipses, and b1/a1 the ratio
between the minor and the major axis of the inner ellipse. A sketch of the considered geometry
is shown on Figure 1.

The governing dimensional system of equations to be solved is written below in vector form:

9 ·V=0,

V= −
k
m

[9P−rg],
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(rCp)*
(T*
(t

+ (rCp)fV ·9T*=l*92T*,

r=ro[1−b(T*−To)].

These equations are the continuity equation for an incompressible fluid, Darcy’s law for flow
in a porous medium, the energy equation, and the fluid equation of state. The density
variations with temperature are only considered in the buoyancy terms. Defining a dimension-
less streamfunction c such that:

hU=
(c

(y
, hV= −

(c

(u
,

where h=h*/a and taking the curl of the equation of motion, the following dimensionless
system is obtained in two dimensions for the blunt configuration:

(T
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sinh u cos 6
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−cosh u sin 6
(T
(6

n
.

The only dimensionless number appearing in these equations is the Rayleigh number, based on
the focal radius a, defined by:

Ra=
(rCp)fbgkaDT

l*n
.

Since the focal radius a depends on the geometry of the layer, the Rayleigh number used
hereafter is based on the inner ellipse major axis, as in the cylindrical case. The dimensionless
boundary conditions on the inner and outer walls are

T=1, c=0, for u=u1, inner wall,

T=0, c=0, for u=u2, outer wall

and, furthermore, symmetry is assumed along the vertical axis.

Figure 1. Annular region between confocal ellipses, blunt and slender configurations.
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Figure 2. Nusselt number vs. Rayleigh number for R=2; �, experimental data; *, elliptical cylindrical co-ordiantes;
—, cylindrical co-ordinates.

For the slender configuration (major axis parallel to gravity vector) the streamfunction
equation to be solved in conjunction with the energy equation is

(2c

(u2 +
(2c

(62 = −Ra*
�

cosh u sin 6
(T
(u

+sinh u cos 6
(T
(6

n
.

The average heat transfer loss from the inner wall can be estimated by integrating the local
heat flux over the entire periphery. The average Nusselt number is defined as the ratio between
the total heat loss and the heat loss for the case of pure conduction, or

Nu=
Qtotal

Qconduction

=
u1−u2

2p
Qtotal,

where

Qtotal= −
& 2p

0

(T
(u

d6, u=u1 or u=u2.

3. NUMERICAL SOLUTION

The above partial differential equations are solved using finite differences on a 100×100 grid.
The energy equation is solved using a second-order alternating direction scheme and the
elliptic streamfunction equation is solved iteratively using a successive over relaxation tech-
nique. The code is very similar to the one used in [7,8] for the circular cylinder case. The
calculations stop when the following test is successful for every grid point:
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)Ti, j
n+1−Ti, j

n

Ti, j
n

)
B10−5.

For both cases, results were first obtained with a 51×81 grid covering half the porous layer.
The grid size was then increased to 100×100. For practically all Rayleigh numbers considered

Figure 3. Isotherms and streamlines for R=2 and Ra=100. (a) Unicellular flow regime; (b) bicellular flow regime.

Figure 4. Nusselt number vs. Rayleigh number for R=1.2; *, elliptical cylindrical co-ordinates; —, cylindrical
co-ordinates.
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Figure 5. Isotherms and streamlines for R=1.2. (a) Unicellular, (b) bicellular, (c) tricellular, (d) four cells.

here, the average Nusselt number calculated with the finer grid was less than 1% different to
the value obtained with the coarser grid.

The local heat flux was evaluated using a fourth-order finite difference formula. In all
calculations, the average Nusselt number evaluated at the outer wall differed by less than 1%
from the value calculated at the inner wall.

In order to validate this code, data obtained for the limiting case of a circular porous layer
is first compared with known, previously published results.

3.1. Concentric cylinder case

For a horizontal porous cylindrical annulus of radius ratio R=2, Caltagirone [1,2] mea-
sured the average Nusselt number using a very long cell (end effects can be neglected). The
code presented here was run with a2/a1=2 and b1/a1=0.99 in order to compare the present
results with this data. Figure 2 shows a plot of the Nusselt number as a function of the
Rayleigh number; the experimental data of Caltagirone [1,2], the numerical results of Mota
and Saatdjian [7,8] using cylindrical co-ordinates and the results obtained with elliptical
co-ordinates are all plotted on this figure. It can be seen that the present results compare very
well with those obtained numerically using cylindrical co-ordinates. The agreement with the
experimental data is excellent for Rayleigh numbers up to 100 and very good for Rayleigh

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 513–522 (1999)
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numbers above 100. Notice that, on increasing the Rayleigh number, the numerical solution
predicts that the unicellular flow regime (Figure 3(a)) becomes bicellular (Figure 3(b)) for a
Rayleigh number of 110. However, as the Rayleigh number is decreased, the bicellular

Figure 6. Nusselt number vs. Rayleigh number for a2/a1=2, b1/a1=0.5, blunt configuration.

Figure 7. Nusselt number vs. Rayleigh number for a2/a1=1.1, b1/a1=0.1, blunt configuration.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 513–522 (1999)



E. SAATDJIAN ET AL.520

Figure 8. Isotherms and streamlines for a2/a1=1.1, b1/a1=0.1. (a) Unicellular, (b) bicellular flow regime; Ra=200.

Figure 9. Nusselt number vs. Rayleigh number for a2/a1=2, b1/a1=0.5, a comparison between blunt and slender
configurations.

becomes unicellular for a Rayleigh number of 65; these values are the same as those obtained
with the code in cylindrical co-ordinates. The bifurcation value of the Rayleigh number
(6594) is in good agreement with the experimental data.

The bicellular flow regime has recently been observed on a cell of very small aspect ratio by
Charrier Mojtabi [5]. At the time, it was believed that three possible flow regimes were possible
for certain Rayleigh numbers (see [3]). It has now been established [9] that the multicellular
regime obtained numerically converges into the unicellular regime if a more severe convergence
test is imposed.
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Figure 10. Nusselt number vs. time for a2/a1=2, b1/a1=0.5, slender configuration; Ra=150.

For a radius ratio of R=1.2, Figure 4 gives a plot of the Nusselt number versus the
Rayleigh number, numerical results obtained with both cylindrical and elliptical co-ordinates
are shown. For this case, the number of cells in half the layer varies from one to four, as
shown in Figure 5. These last results, for a layer of small radius ratio, are in agreement with
the bifurcation analysis of Himasekhar and Bau [4].

3.2. Elliptic porous layer

Results obtained for the case where the major axis is horizontal (blunt configuration) are
first presented. For a geometry defined by a2/a1=2 and b1/a1=0.5, a plot of the Nusselt
number versus the Rayleigh number is shown in Figure 6. As in the concentric case of the same
radius ratio, a hysteresis loop is obtained between Rayleigh numbers 69 and 173. The heat
transfer rate from an annulus of elliptic cross-section is greater than that obtained from the
circular annulus of the same radius ratio.

For an annulus defined by a2/a1=1.1 and b1/a1=0.1, the plot of the Nusselt number versus
the Rayleigh number is shown in Figure 7. Notice that despite the small major axis ratio, and
unlike the cylindrical case, a hysteresis loop is again obtained. Figure 8 shows the isotherms
and the streamlines for the two possible regimes at a Rayleigh number of 200. For this value
of the eccentricity (e=0.1), the geometry is similar to a horizontal flat plate and the secondary
cell is well-defined and stable.

Calculations for the slender configuration (Figure 1(b)) have also been performed. For the
unicellular regime, the velocities are greater than those obtained in the blunt configuration. So,
in all cases, the overall heat transfer from the walls to the fluid is greater in this configuration.
This phenomenon has also been noted for fluid layers [10,11], and is attributed to curvature.
For Rayleigh numbers between 50 and 150, Figure 9 shows the average Nusselt number for
both configurations, the radius ratio and the eccentricity are 2 and 0.5 respectively. Notice that
the curve for the slender configuration is always on top of the one for the blunt configuration.

An interesting phenomenon occurs for the slender configuration once a high enough
Rayleigh number is reached. Instead of creating a secondary cell, a Hopf bifurcation is
encountered. In Figure 10, the average Nusselt number on both walls is plotted versus time. As
can be seen, the average Nusselt number varies periodically with time. A stability analysis
should be able to confirm this observation.

4. CONCLUSIONS

The Darcy–Boussinesq natural convection equations are solved using finite differences on a
confocal elliptical porous layer; the circular annulus and a horizontal flat plate are two limiting
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cases of this geometry. An implicit alternating direction scheme is used to solve the energy
equation and an iterative scheme is implemented for the streamfunction equation. The results
obtained for the circular annulus confirm those obtained previously using cylindrical co-ordi-
nates. For the elliptical case, the heat transfer from a layer with vertical major axes is greater
than that from a layer with horizontal major axes. When the major axes are vertical, a Hopf
bifurcation (instead of the formation of a secondary cell) is observed for Rayleigh numbers
above a certain limit.
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